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Review Article

Molecularly-Targeted Strategy and NF-kB
in Lymphoid Malignancies

Ryouichi Horie

Molecularly-targeted therapy is a promising strategy for the treatment of cancer. Nuclear factor (NF)-kB is a transcription

factor that is constitutively activated in various lymphoid malignancies and may therefore be a good therapeutic target.

Lymphoid malignancies arise from different stages of normal lymphocyte differentiation and acquire distinct pathways for

constitutive NF-kB activation. However, no NF-kB inhibitor has yet been successfully applied in clinical medicine. This review

focuses on the concept of molecularly-targeted therapeutics with small molecule drugs, molecular mechanisms of constitutive

NF-kB activation in lymphoid malignancies, and the development of NF-kB inhibitors. A future perspective regarding the

development of NF-kB inhibitors is also included. 〔J Clin Exp Hematop 53(3) : 185-195, 2013〕
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INTRODUCTION

Over the past decade, considerable advancements in mo-

lecular biology have facilitated a greater understanding of the

mechanisms of cancer and the development of molecularly-

targeted antineoplastic therapy with small molecule drugs.

For example, all-trans-retinoic acid for acute promyelocytic

leukemia and imatinib for chronic myelocytic leukemia

(CML) have resulted in marked improvement in outcomes for

many patients.1,2 In the field of lymphoid malignancies, the

proteasome inhibitor, bortezomib, has improved outcomes for

patients with multiple myeloma (MM).3 The anaplastic lym-

phoma kinase (ALK) inhibitors such as crizotinib for patients

with anaplastic large cell lymphoma (ALCL) will show us

another success story.4 Although there are an increasing

number of such compounds that are being applied in clinical

medicine, molecularly-targeted therapies for lymphoid malig-

nancies remain limited.

The successful development of molecularly-targeted ther-

apy requires a classification of each subtype of the specific

cancer based on the major signaling pathways that underlie

their pathogenesis. Nuclear factor-kB (NF-kB) is constitu-

tively activated in various lymphoid malignancies and may be

a potential therapeutic target.5 The present review focuses on

the concept of molecularly-targeted therapeutics with small

molecule drugs, molecular mechanisms of constitutive NF-

kB activation in lymphoid malignancies, and the development

of NF-kB inhibitors.

MOLECULAR TARGETING OF CANCER AND

ITS THEORETICAL BACKGROUND

Molecularly-targeted therapy is a promising antineoplastic

modality. Recent studies have advanced our knowledge of

the theoretical background of molecularly-targeted therapy

with small molecule drugs, including the concepts “oncogene

addiction”, “oncogene amnesia”, “oncogenic shock”, and “re-

habilitation”.6-9

Oncogene addiction and amnesia

Cancer cells bear many persistent abnormalities in onco-

genes and tumor suppressor genes that can vary between

different types of cancer cells and that can trigger deregula-

tion of various signaling pathways. Although many signal

transduction pathways are affected, there is typically only a

few signaling pathways that are central to the neoplastic phe-

notype. This notion is currently known as the “oncogene

addiction” theory and is supported by the success of therapies

that block discrete molecular pathways.6,10 For example,

CML is characterized by gene translocation t(9;22)(q34;q11),

which fuses the Abelson (Abl) tyrosine kinase gene at chro-

mosome 9 with the break point cluster (Bcr) gene at chromo-
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some 22, thereby generating the chimerical tyrosine kinase,

Bcr-Abl. Bcr-Abl constitutively transduces aberrant signals,

and blockade of this molecule by imatinib induces apoptosis

of CML cells, thereby showing that CML cells are “addicted”

to signals produced by Bcr-Abl. Even in cells with “onco-

gene addiction”, transformation and proliferation of cancer

cells do not take place without a concomitant defect in safety

systems that control checkpoint signals. This defect is called

“oncogene amnesia” and is recognized as a cause of

tumorigenesis.7

Oncogenic shock and rehabilitation

Cancer cells depend on addicted signals that promote their

survival by stimulation of proliferation and maturation arrest

and also depend on inhibition of safety systems. Our experi-

ence in molecularly-targeted therapy indicates that survival of

cancer cells depends on the balance between pro-survival and

apoptotic signals. Blockage of survival signals in the context

of addiction causes imbalance between these two signals, and

subsequent domination of apoptotic signals induces cancer

cells death. This phenomenon is referred to as “oncogenic

shock”.8

Even if molecularly-targeted therapies are highly success-

ful, complete eradication of cancer cells from the body is

difficult. In the case of CML, a cancer stem cell population

appears to be resistant to imatinib, and suspension of imatinib

therapy results in re-growth of CML cells. However, a cer-

tain proportion of patients with Bcr-Abl expression below the

levels of detection do not experience recurrence. This indi-

cates the importance of a rehabilitation step by the microen-

vironment, which surrounds the small residual number of

cancer cells and inhibits their re-growth.11 Recent studies

indicate that immunomodulatory agents, which promote fur-

ther reduction of residual cancer cells, are excellent comple-

ments of molecularly-targeted therapy ; this concept is

known as “rehabilitation” .9 A schematic representation of

oncogene addiction, oncogene amnesia, oncogenic shock and

rehabilitation in relation to cancer treatment is presented in

Fig. 1.

NUCLEAR FACTOR-kB (NF-kB)

NF-kB is a transcription factor that was originally de-

scribed by Baltimore and co- investigators in 1986 as a mole-

cule that binds to the promoter region of the immunoglobulin

k chain. NF-kB is induced by many diverse stimuli, including

inflammatory cytokines, growth factors, oxygen stress and

pathogens that are involved in many different biological phe-

nomena (e.g., immune response, inflammation, cell prolifera-

tion, apoptosis and bone metabolism).12

Mechanisms of activation

NF-kB consists of five family members [i.e., RelA (p65),

c-Rel, RelB, p50/p105 and p52/p100] and forms homo- or

hetero-dimers. The regulatory factor, inhibitor of kB (IkB)

localizes NF-kB within the cytoplasm. Both p105 and p100

possess a hybrid feature of NF-kB and IkB. These proteins

are processed to NF-kB p50 and p52 by degradation of the

IkB domain, respectively. Upon stimulation, signals con-

verge on the IkB kinase (IKK), and degradation of IkB re-

leases NF-kB and enables it to enter the nucleus, where NF-

kB binds to the consensus sequence GGGRNNYYCC (R,

purine ; Y, pyrimidine ; N, any base) in the promoter region

of target genes and promotes gene expression. Major NF-kB

pathways consist of the canonical (classical) and non-

canonical (alternative) pathways (Fig. 2). NF-kB inducing

kinase (NIK) in the non-canonical pathway can also activate

the canonical pathway. Previous reports indicates that IKKa-

mediated activation of IKKb is involved in this process,

although this notion remains controversial.13,14

A unique IkB protein, B cell leukemia/lymphoma 3 (BCL-

3), regulates the third pathway. BCL-3 forms a complex with

the p50 or p52 homodimer, both of which are processed from

their precursor by IKK or related signals. This complex

enters the nucleus and acts to repress or activate target genes.

Phosphorylation by glycogen synthase kinase 3 (GSK3) and

deubiquitination by cylindromatosis (CYLD) promotes and

inhibits translocation of BCL-3 into the nucleus, respectively.
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Fig. 1. A schematic representation of oncogene addiction,

oncogene amnesia, oncogenic shock and rehabilitation in the

process of cancer treatment. After shrinkage of the tumor cell

burden by molecularly-targeted therapy, the rehabilitation

process takes place. In the case of treatment failure, the origi-

nal clone or modified clone with altered addiction expands,

and recurrence occurs.
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However, the manner in which this pathway is regulated is

poorly understood.

DNA damage caused by diverse stimuli, such as chemo-

therapeutic agents and radiation, triggers ataxia telangiectasia

mutated (ATM) and activates the IKK complex via ubiquiti-

nation of IKKg. This inducible NF-kB protects cells from

apoptosis and blunts the effect of the treatment. The different

pathways are indicated in Fig. 2.12,15-17

Roles in cancer

NF-kB participates in the regulation of more than 500

genes and plays a central role in cancer biology by virtue of

its actions on proliferation, anti-apoptosis, vascular regenera-

tion, inflammation, metastasis, and infiltration. Signaling

pathways involved in cancer cells are frequently linked to NF-

kB. Constitutive activation of NF-kB is a hallmark of various

type of cancers that originate from the hematopoietic system

as well as solid organs.18,19 This has led to the investigation

of the molecular events responsible for constitutive activation

of NF-kB.20 Lymphoid malignancies frequently show strong

and constitutive activation of NF-kB, which suggests that NF-

kB plays a very important role in the development of lym-

phoid cells and their neoplastic transformation.21 In other

words, the “oncoge addiction” of malignant lymphoid cells

may frequently be dependent on NF-kB. Experimental data

also supports the notion of “NF-kB addiction” of lymphoid

malignancies, all of which suggest that constitutive activation

of NF-kB is a promising therapeutic target for lymphoid ma-

lignancies.

DEREGULATION OF NF-kB IN LYMPHOID

MALIGNANCIES

Constitutive activation of NF-kB in lymphoid malignanc-

ies was initially described in studies conducted around the

year 2000. Subtypes in which this has been demonstrated

include diffuse large cell lymphoma (DLBCL) of activated B-

cell (ABC) type,22 mucosa-associated lymphoid tissue

(MALT) lymphoma,23 mantle cell lymphoma (MCL),24 B-

precursor acute lymphocytic leukemia (ALL), classical

Hodgkin lymphoma (cHL),25 MM26 chronic lymphoid leuke-

NF-kB in lymphoid malignancies
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Fig. 2. Nuclear factor (NF)-kB pathways. Canonical (classical) and non-canonical

(alternative) pathways are the major NF-kB pathways. There are a third pathway that is

regulated by the unique protein, bcl-3, and a pathway triggered by DNA damage.
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mia (CLL)27 and lymphoid malignancies strongly associated

with viruses, i.e. adult T-cell leukemia/lymphoma (ATLL)28

and primary effusion lymphoma (PEL).29 These malignancies

arise from different stages of normal lymphocyte differentia-

tion and have distinct pathways for NF-kB activation.

Defective mutation in negative regulators of NF-kB sig-

naling (i.e., A20, cylindromatosis, IkB, etc.) is responsible for

NF-kB activation in some of these lymphoid malignancies.

Loss of these signals alone is not solely responsible for

changes in NF-kB signaling.30 Instead, these mutations may

be a consequence of positive selection of cells bearing these

mutations and loss of control during malignant transforma-

tion. These mutations may cooperate with upstream signals

and thereby result in constitutive NF-kB signaling. Table 1

summarizes lymphoid malignancies characterized by strong

and constitutive NF-kB activation and the molecules involved

in this process. Most of the molecules involved are clustered

within canonical and non-canonical pathway. Positions of

each molecule in the NF-kB pathway are indicated in Fig. 3.

DLBCL and MALT lymphoma

The molecules responsible for the deregulated activation

of NF-kB signaling are localized between the B-cell receptor

(BCR) and the transforming growth factor-b-activated kinase

1 (TAK1). Activating mutations of CD79B, or less com-

monly of CD79A or caspase recruitment domain-containing

protein 11 (CARD11), account for one-third of cases of NF-

kB activation in activated B-cell (ABC)-like DLBCL.31,32

One-quarter of ABC-like DLBCL cases are associated with

genetic inactivation of A20. Although rare, production of

mutant NF-kB2 (p100) lacking ankyrin repeats by deletion of

the 3’ end of the NF-kB2 gene is also associated with NF-kB

activation. Many more alterations have been discovered in

this subtype.33,34

Formation of chimerical cellular inhibitor of apoptosis

protein 2 (c-IAP2)-MALT1 by t(11;18)(q21;q21) triggers

constitutive NF-kB signaling independent of regulation of

CARD11 and B-cell lymphoma/leukemia 10 (BCL10) by

BCR in the case of MALT lymphoma that is unrelated to

Helicobacter pylori infection.35-37 Less commonly, constitu-

tive induction of MALT1 and BCL10 by t(14;18)(q32;q21)38

and t(1;14)(p22;q32),23,39 respectively, also contributes to

modification of NF-kB signaling.

cHL, MM and CLL

Molecules involved in cHL include the family of tumor

necrosis factor receptors (TNFRs). Activation of TNFR mol-

ecules (i.e., CD30,40-42 CD40,40,43 transmembrane activator

and CAML interactor [TACI], B-cell maturation antigen

[ BCMA] ,44 and receptor activator of NF-kB [RANK]45), and
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Table 1. Lymphoid malignancies and molecules involved in constitutive nuclear factor-kB

(NF-kB) activation

Lymphoid malignancies Molecules triggering aberrant NF-kB activation

ABC-diffuse large B-cell lymphoma Activating mutations in CD79A/B and CARD11

Inactivating mutations of A20

Activating mutations in p100

MALT lymphoma Chimerical c-IAP2-MALT1

Induction of BCL10 and MALT-1 by chromosomal transloca-

tions

Classical Hodgkin lymphoma CD30, CD40, RANK, TACI, BCMA, LMP-1, c-Rel

Inactivating mutations of IkB and A20

Multiple myeloma TACI, BCMA

Various genetic aberrations (e.g., CD40, LTbR, NIK, TRAF2,

TRAF3, p50, p100, CYLD)

Chronic lymphocytic leukemia CD40, TACI, BCMA, GSK3b

B-precursor acute lymphocytic leukemia Chimerical Bcr-Abl

Activating mutations in Ras

Mantle cell lymphoma TACI, BCMA

Adult T-cell leukemia/lymphoma Tax, NIK

Pleural effusion lymphoma v-FLIP

ABC, activated B-cell; MALT, mucosa associated lymphoid tissue; CARD11, caspase recruitment domain-

containing protein 11; c-IAP2, chimerical cellular inhibitor of apoptosis protein 2; BCL10, B-cell lymphoma/

leukemia 10; RANK, receptor activator of NF-kB; TACI, transmembrane activator and calcium-modulator and

cyclophilin ligand interactor; BCMA, B-cell maturation antigen; LMP-1, latent membrane protein-1; IkB, inhib-

itor of kB; LTbR, lymphotoxin-b receptor; NIK, NF-kB inducing kinase; TRAF, tumor necrosis factor receptor-

associated factor; CYLD, cylindromatosis; GSK3b, glycogen synthase kinase 3b; NIK, NF-kB inducing kinase;

v-FLIP, viral FLICE-inhibitory protein [ FLICE, Fas-associating protein with death domain (FADD)-like

interleukin-1b-converting enzyme (ICE)].
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TNFR-like proteins (i.e., Epstein-Barr virus latent membrane

protein-1 [LMP-1]) involve constitutive NF-kB signaling in

cHL. Defective mutations in negative regulators (i.e., IkB46,47

and A2048), and amplification of the c-REL locus may also

involve constitutive NF-kB signaling in cHL.49

In terms of NF-kB target genes, primary mediastinal B-

cell lymphoma and cHL have similar gene expression

profiles.50,51 Although the c-REL amplification and defects in

A20 have been reported, the precise molecular mechanisms of

constitutive NF-kB activation in primary mediastinal B-cell

lymphoma remain unclear.52 A recent report indicates in-

volvement of NF-kB in the gene expression profile of nodular

lymphocyte predominant Hodgkin lymphoma (NLPHL).53

In part, NF-kB activation in MM may be caused by sig-

nals from the bone marrow microenvironment ; activation of

TACI and BCMA by their ligands, B-cell-activating factor

(BAFF) and a proliferation-inducing ligand (APRIL) are con-

ceivably involved in this process.54,55 In addition, MM cells

harbor various non-overlapping mutations (Table 1).14,56

Genetic alterations in the NF-kB pathway are rarely re-

ported in CLL when compared with other lymphoid malig-

nancies. CD40 is involved in NF-kB activation in neoplastic

follicle and in bone marrow.57,58 BAFF and APRIL activate

NF-kB via their receptors, TACI and BCMA, in a paracrine or

autocrine manner.59 Aberrant accumulation of GSK3b in the

nucleus is another mechanism responsible for NF-kB activa-

tion in CLL.60

ALL and MCL

Formation of chimerical Bcr-Abl by t(9;22) and activating

Ras mutations involves constitutive NF-kB signaling in B-

precursor ALL. Bcr-Abl is associated with 25-30% of adult

cases and with 5% of child cases and is thought to activate

NF-kB in an IKK-independent manner.61-63 Ras mutations

can mediate activation of the canonical pathway via direct

degradation of IkBa61

NF-kB signaling in MCL drives BAFF and forms a posi-

tive feedback loop activating the canonical and alternative

pathway via BCMA and TACI.64 MCL also shows mono-

and bi-allelic deletions of FAF1, which inhibits RelA and

IKKb65 A20 is often inactivated in MCL by genomic muta-

tions, deletions and increased methylation of the promoters.66

ATLL and PEL

Human T-cell leukemia/lymphoma virus type 1 (HTLV-

1) tax triggers NF-kB signaling by associating with and acti-

vating IKK.67,68 However, in ATLL cells, Tax expression is

generally repressed by epigenetic or other mechanisms in

HTLV-1 proviruses.69,70 Tax is a major molecule that triggers

NF-kB signaling during transformation of infected cells.

NF-kB in lymphoid malignancies
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Fig. 3. The molecules committed to constitutively strong nuclear factor (NF)-kB activation in

lymphoid malignancies and their positions within NF-kB pathways. Involved molecules indicated

in Table 1 are illustrated in black font.
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Recent studies suggest that NIK mediates constitutive NF-kB

signaling, which is triggered by suppression of miR31, a

negative regulator of NIK mRNA.71,72 PEL is associated with

Kaposi sarcoma-associated herpes virus (KSHV) infection,

and association of viral FLICE-inhibitory protein (FLIP), a

cellular homologue of FLIP, with IKK complex induces con-

stitutive NF-kB signaling.73

DEVELOPMENT OF NF-kB INHIBITORS

As indicated in Fig. 4, targets of NF-kB inhibitors can be

classified as follows : (a) ubiquitination, which transduces

signals downstream (i.e., K63 type ubiquitination or straight

chain ubiquitination), (b) kinase cascades, which phosphory-

late IKK and mediate the phosphorylation of IkBa, (c) degra-

dation of IkBa modified with K48 type ubiquitination at the

proteasome, (d) nuclear translocation of NF-kB, (e) DNA

binding of NF-kB, and (f) acetylation or methylation of NF-

kB.

There are more than 800 NF-kB inhibitors. However,

some of these inhibitors can only be used in the laboratory

due to toxicity or pharmacodynamics limitations.74 NF-kB

inhibitors can be classified as old drugs, which have already

been used in clinical practice and were only recently discov-

ered to have inhibitory properties, and new drugs, which have

been purposely developed as NF-kB inhibitors. As of yet,

none of these new NF-kB inhibitors have been successfully

translated into clinical medicine. An overview of the current

status of representative NF-kB inhibitors is described in

Table 2.

Old drugs

This group includes classical drugs, such as steroids and

non-steroidal anti-inflammatory agents. Most of these old

drugs have an NF-kB inhibitory effect as a part of their

original effect. Non-steroidal anti-inflammatory agents, such

as aspirin, sulindac and selective COX-2 inhibitors, exert an

NF-kB inhibitory effect by inhibiting multiple steps in the

NF-kB pathway,75,76 and several reports suggest that these

compounds can prevent cancer, including cHL.77

Glucocorticoids, such as dexamethasone and predniso-

lone, are widely used as anti-inflammatory and immunosup-

pressive agents and for the treatment of lymphoid malignanc-

ies. Two mechanism of actions have been proposed for their

effects : IkBa transcription mediated by glucocorticoid recep-

tor (GR)78,79 and histone acetylation or methylation by the

GR-RelA complex.80

Sulfasalazine (SSZ), a synthetic anti-inflammatory drug

used for rheumatoid arthritis and inflammatory bowel disease,

inhibits NF-kB by direct inhibition of adenosine triphosphae

(ATP) binding to IKKa and IKKb81 Thiol-reactive drugs,

represented by arsenic trioxide and gold compound auranofin,

inhibit NF-kB by modifying IKKb Cys-179.82,83 These drugs

have been used for the treatment of acute promyelocytic leu-

kemia (APL) and rheumatoid arthritis, respectively.

Tamoxifen, a selective estrogen regulator modulator

(SERM),84 a ligand for peroxisome proliferators-activated re-

ceptor (PPAR),85 derivatives of macrolides (rapamycin and

everolimus86 ), immunomodulators (thalidomide and

lenalidomide87) and dietary agents (culcumin88) inhibit NF-

kB, although the mechanisms by which they produce this

effect are unclear.

New drugs

Pharmaceutical companies are developing specific NF-kB

inhibitors, and most of these drugs target a key molecule that

has a critical role in signal transduction in the NF-kB path-

way. Most of these drugs are inhibitors for IKK, especially

IKKb89 Other drugs include inhibitors of the nuclear translo-

cation and the DNA binding of NF-kB. Although some of

these drugs have entered in clinical trials, most are not being

currently studied for cancer. Bortezomib, a proteasome in-

hibitor, was previously thought to inhibit NF-kB, but more

recent reports indicate that this compound activates NF-
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Fig. 4. Potential targets for the development of nuclear factor

(NF)-kB inhibitors. Inhibition is more specific when a compound

is directed against more unique targets in NF-kB pathways.
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kB.90 Therefore, further characterization of the mechanism of

action of this compound is required.

IKK inhibitors

Many IKK inhibitors have been described, and most have

more potent activity against IKKb than against IKKa. Most

common IKK inhibitors, which includes b-carbolin (PS-

1145) and quinazoline (SPC-839) exert their effect by inhibit-

ing incorporation of ATP into IKK.91,92 ACHP [2-amino-6-

[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl

nicotinonitrile] also exerts its effect by competing with ATP

for incorporation to IKK.93 BMS-345541, which is a qui-

noxaline derivative, inhibits kinase activity by an allosteric

effect without affecting ATP binding.94 The epoxiquinon A

monomer, the jesteron dimer, and parthenolide all target Cys-

179 in IKKb95,96 Recent reports suggest that the anti-cancer

effect of IKKb inhibitors is hampered by activation of the

non-canonical pathway.97 Furthermore, several reports indi-

cate the involvement of IKK in pathways other than NF-kB,

thereby raising the question about the specificity and potential

off-target effects of IKKb inhibitors.98,99

Inhibitors of the nuclear translocation and DNA binding

of NF-kB

The targets of these small numbers of drugs are down-

stream of IKK and are shared within the canonical and non-

canonical NF-kB pathway. SN-50 is a peptide consisting of

26 amino acids that includes the nuclear translocation signal

of NF-kB p50 and that competitively inhibits nuclear translo-

cation of NF-kB into the nucleus.100 However, SN-50 also

inhibits other transcription factors, such as AP-1, because of

similarities in amino acids alignment. The chroman analog,

KL-1156, prevents the nuclear translocation step of RelA.101

DHMEQ, a 5-dehydroxymethyl derivative of epoxyquinomi-

cin C isolated from Amycolatopsis sp., is a unique NF-kB

inhibitor that acts at the level of the translocation of NF-kB

into the nucleus and DNA binding.102,103 DHMEQ directly

binds to NF-kB, and its effect is more potent on NF-kB with

the activation domain (i.e., RelA, c-Rel and RelB) than on

NF-kB without the activation domain (i.e., p50 and p52). We

previously described the efficacy of DHMEQ on various lym-

phoid malignancies, including MM, CLL, ATLL, cHL and

PEL.28,104-107 IKKb inhibitors that target the Cys-179 of IKKb

also target Cys within the DNA binding domain of NF-kB and

inhibit the binding of NF-kB into target DNA sequences.

CONCLUDING REMARKS

Preclinical studies suggest that NF-kB inhibitors may have

utility for the treatment of cancers, especially in lymphoid

malignancies in which there is constitutively strong NF-kB

activity. Since NF-kB plays important roles in many biologi-

cal phenomena, including immunity and hematogenesis, it is

important to keep side effects to a minimum. For that pur-

pose, when we try to translate a developed NF-kB inhibitor

into clinical medicine, it is important to understand the molec-

ular background of each cancer and the mechanisms of the

action of the NF-kB inhibitors. Careful follow-up of side

effects in clinical studies is also important. Reevaluation of

old drugs may provide an avenue to identify an effective

strategy with a lower incidence of side effects. Imatinib is

called as “a magic cancer bullet” because it is very effective.

Thus, if an NF-kB inhibitor can be successfully translated into

clinical medicine, the compound will deserve to be called as

“a miracle cancer bullet”.

NF-kB in lymphoid malignancies
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Table 2. Old and new nuclear factor-kB (NF-kB) inhibitors,

and their major targets in NF-kB pathways

Drugs Targets in NF-kB pathway

Old drugs

Glucocorticoids IkB, RelA

SERMs

Tamoxifen, Raloxifene IKK, RelA

PPAR ligands

Ciglitazone IkBa, IkBb

Macrolides

Everolimus IkBa

Thalidomide IKKb

Thiol-reactive drugs

Arsenic trioxide IKKb

Auranofin IKKb

NSAIDs

Aspirin IKK, RelA, COX-2

Dietary agents

Culcumin IKK

New drugs

IKK inhibitors

PS-1145 IKKb

ACHP IKKb

SPC-839 IKKb

BMS-345541 IKKb

Nuclear translocation inhibitors

DHMEQ NF-kB

Proteasome inhibitors

Bortezomib Proteasome

SERM, selective estrogen regulator modulator; PPAR, peroxisome

proliferators-activated receptor; NSAIDs, non-steroidal anti-inflammatory

drugs; IKK, inhibitor of kB kinase; PS-1145, b-carbolin; ACHP, 2-amino-

6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinoni-

trile; SPC-839, quinazoline; DHMEQ, 5-dehydroxymethyl derivative of

epoxyquinomicin C; IkB, inhibitor of kB; COX-2, cyclooxygenase-2.
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