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Age-Dependent Decrease of DNA Hydroxymethylation in
Human T Cells

Thien Phu Truong,1) Mamiko Sakata-Yanagimoto,1,2) Momoko Yamada,1) Genta Nagae,3)

Terukazu Enami,1) Rie Nakamoto-Matsubara,1) Hiroyuki Aburatani,3) and Shigeru Chiba1,2,4)

Hydroxymethylcytosine (hmC) is a natural nucleobase, which is converted from methylcytosine (mC) by tet methylcytosine

dioxygenase (TET) family (TET1-3) enzymes. Decrease of genomic hmC is postulated to confer a risk for myeloid-lineage as

well as T-cell neoplasms, based on the fact that loss-of-function mutations in the TET2 gene were frequently identified in these

diseases. The relationship between hmC and aging remains to be elucidated. Here, we demonstrated that hmC content

decreased with age in the peripheral blood T cells of 53 human volunteers. We further identified that the mRNA expression

levels of TET1 and TET3 decreased with age, while those of TET2 were not influenced by age. The genomic hmC content was

correlated with the mRNA expression level of TET3, but not those of TET1 and TET2. Our study suggests the presence of new

epigenetic regulatory mechanisms in aging T cells. 〔J Clin Exp Hematop 55(1) : 1-6, 2015〕
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INTRODUCTION

Aging is accompanied by alteration of T-cell function,

which leaves the elderly susceptible to infectious and autoim-

mune diseases. There have been several studies focused on

age-dependent changes in T-cell function, including cytokine

production and antigen-specific responses.1-3 Furthermore,

alteration in populations of functional T cells, such as an

increase of regulatory T cells, has been described in the

elderly.4 Although these age-dependent changes in T cells

have been attributed to alteration of transcriptional networks

and other molecular pathways, the cues that may initiate such

molecular events remain to be uncovered.

DNA methylation, one of the mechanisms for epigenetic

regulation, plays important roles in diverse cellular processes,

including cellular differentiat ion, senescence, and

transformation.5,6 Numerous regulators of T-cell function are

known as targets of DNA methylation in T cells, including

transcription factors such as FOXP3, cytokines such as

interleukin-2, and micro-RNA such as miR-10b.7-9

Aging cells are also known to possess their own distinct

methylation profiles when compared with young cells. Since

the 1990s, age-dependent reduction of methylcytosine content

in the genome or the mitochondria has been described in

various tissues.10-13 More recently, genome-wide methylation

analysis using second-generation sequencing technologies

dramatically changed our understanding of cytosine modifica-

tion in aging cells.14-20 Cytosine methylation is increased or

decreased with age, depending on the tissue and the DNA

region.19,21,22

Hydroxymethylcytosine (hmC) is an identified physio-

logic nucleotide contained in DNA, and an essential inter-

mediate in the active and passive demethylation process.23,24

Furthermore, hmC may serve as an epigenetic mark that regu-

lates gene expression.15,25 In mammalian cells, three tet meth-

ylcytosine dioxygenase (TET) proteins (TET1-3) function as

converters of methylcytosine (mC) to hmC.

Alteration of the level of hmC has been analyzed in the

brain and several organs/cells other than T cells. In the cere-

bellum, the hmC content in the genome was increased with

age.26 The link between hmC content and age has also been

studied with mitochondrial DNA,22,27,28 mitochondrial hmC

was reported to be decreased in the frontal cortex but un-

changed in the cerebellum during aging.27 In the sperm, age-

dependent increase in hmC content in the genome was
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reported.28 These studies indicated the presence of distinct

regulatory systems for the genomic hmC levels with age in

each cell type.

MATERIALS AND METHODS

Samples

Twenty milliliters of peripheral blood was collected from

53 healthy volunteers (20-83 years, median 48.3 years) after

written informed consent had been obtained. The experimen-

tal design was approved by the ethics committee of the

University of Tsukuba Hospital.

Separation of human CD3+ T cells

Mononuclear cells (MNCs) in the blood cells were sepa-

rated by a gradient method using Ficoll-plus (GE Healthcare,

Buckingham, UK). MNCs were then incubated with phy-

coerythrin (PE)-conjugated mouse anti-human CD3 antibody

(BD Pharmingen, San Diego, CA, USA) for 30 min at 4℃,

followed by incubation with anti-PE MicroBeads (Miltenyi

Biotec, Bergisch Gladbach, Germany). CD3+ cells were man-

ually separated using LS Columns (Miltenyi Biotec) accord-

ing to the manufacturer’s instructions. Purity of CD3+ cells >

85% was confirmed using FACS Calibur (BD Biosciences,

San Jose, CA, USA).

Dot blot analysis

Genomic DNA was extracted from CD3+ cells using the

phenol-chloroform method. Dot blot analysis was performed

as previously described with minor modifications.25 Briefly,

after DNA denaturation, 2-fold serial dilutions were spotted

onto a Z probe membrane (Bio-Rad, Munich, Germany).

Membranes were incubated with rabbit anti-hmC antibody

(Active Motif, Carlsbad, CA, USA) overnight at 4℃, fol-

lowed by incubation with horseradish peroxidase-conjugated

anti-rabbit immunoglobulin G secondary antibody (DAKO,

Glostrup, Denmark). The membrane was incubated with an

enhanced chemiluminescence reagent (Immobilon Western

Millipore, Billerica, MA, USA) and then visualized using

Image Quant LAS 4000 (GE Healthcare). 

mRNA expression analysis

Total RNA was extracted from CD3+ T cells using an

RNAeasy mini kit (Qiagen, Venlo, The Netherlands). cDNA

was synthesized with random primers using SuperScript III

(Life Technologies, Carlsbad, CA, USA). mRNA expression

was analyzed using SyberGreen reagent (Roche, Mannheim,

Germany) detected with ABI7500 (Life Technologies,

Carlsbad, CA, USA). Data were normalized using glyceral-

dehyde 3-phosphate dehydrogenase (GAPDH). Primer se-

quences for human TET1, TET2, TET3, and GAPDH are

listed in Table 1.

Statistical analysis

Data were analyzed by Pearson’s chi-squared test using

Predictive Analytics Software (PASW) Statistics 18 (Japan

International Business Machines, Tokyo). All p values were

from 2-tailed tests. P values < 0.05 were considered signifi-

cant.

RESULTS

Age-dependent decrease of hmC in human T cells

In each series of dilution, we chose 3 points that gave the

most linear correlation between the dilution and the concen-

tration measurement. This procedure provided reproducible

values for the hmC content, which were significantly de-

creased with age (R2 = 0.395, p < 0.01) (Fig. 1a). The hmC

content was linearly decreased when the volunteers were ana-

lyzed in 10-year intervals of age (Fig. 1b). In contrast, the

hmC content was not influenced by gender (p = 0.36) (Fig.

1a).

Age-dependent decrease of TET1 and TET3 mRNA ex-

pression levels in human T cells

TET family proteins (TET1-3) are the only enzymes iden-

tified to convert mC to hmC. Therefore, we examined the

relationship between the expression levels of TET family

genes and age. We found that the mRNA expression levels of

TET1 and TET3 were significantly decreased with age (R2 =

0.127, p < 0.01; R2 = 0.260, p < 0.01, respectively), while

those of TET2 were unchanged (R2 = 0.022, p = 0.28) (Fig.

2).

Correlation between the TET3 mRNA expression levels

and the genomic hmC content in human T cells

Then, we compared the genomic hmC content with the

mRNA expression levels of TET1, TET2, and TET3. This

indicated that the mRNA expression level of TET3 was signif-

icantly correlated with the hmC content (R2 = 0.097, p =
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Table 1. Primer sequences

Primers Forward Sequence (5’-3’) Reverse Sequence (5’-3’)

TET1 GGGCAGTGGAAAAGAAACCT GGGGTTCGGTTTCACTTTTT

TET2 CCATCTTGCAGATGTGTAGAGC CCCTGAGAACTTTTGCCTTC

TET3 CCACAAGGACCAGCATAACCTC CTCGCTACCAAACTCATCCGTG

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC
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0.02), while those of TET1 and TET2 were not (R2 = 0.020,

p = 0.30; and R2 = 0.024, p = 0.26, respectively) (Fig. 3).

DISCUSSION

We demonstrated a dramatic age-dependent decrease in

the genomic hmC content in human peripheral blood T cells.

This could be caused by the gradual decrease in TET3 expres-

sion level during aging (Fig. 4). The decrease in genomic

hmC content might play a role in alteration of the T-cell

function in elderly people, although the possibility has not

been ruled out that the changes in both TET3 mRNA level and

hmC content represent a secondary observation reflecting a

population change within the T-cell compartment.

Nevertheless, we have identified an interesting link between

epigenetic change in aged T cells and the increase in T-cell

malignancies in the elderly. Extremely frequent TET2 muta-

tions have been reported in angioimmunoblastic T-cell lym-

phoma (AITL) and peripheral T-cell lymphoma, not other-

wise specified (PTCL-NOS), having AITL-like features by us

(83%)29 and others (30-76%).30-32 Given the fact that aging is

an overwhelming risk factor for both AITL and PTCL-NOS,

it is speculated that the combinatorial hmC decreases caused

by age-dependent impairment of TET3 function due to its

reduced expression and by impairment of TET2 function due

to mutations might provide a certain T cell with transforming

ability. Because TET2 mutations are also known to be com-

mon in myeloid malignancies,29-31 similar combinatorial hmC

decreases in hematopoietic stem/myeloid progenitor cells

might cause these cancers. Mutations in TET family genes

are rare in malignancies other than those of the hematopoietic

lineages,33-36 but a reduction in genomic hmC content has

Age-dependent decrease of hmC in T cells
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Fig. 1. Age-dependent decrease of hmC in human T cells. hmC content in T cells was measured by

dot blot analysis. (1a) hmC content vs. age. (1b) hmC content vs. 10-year intervals of age. M, male; F,

female.

Fig. 2. Age-dependent decreases of TET1 and TET3 mRNA levels. mRNA expression levels of TET1, TET2, and TET3 in T cells

were analyzed by qRT-PCR. GAPDH was used for normalization. (2a) TET1 relative expression vs. age. (2b) TET2 relative

expression vs. age. (2c) TET3 relative expression vs. age.
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been described in colorectal,35,37 gastric,35,38 prostate, breast,39

hepatocellular,40 and lung34 carcinomas, as well as brain

tumor34 and melanoma.33 Taking these findings together,

appropriate regulation of mC to hmC conversion may be

necessary to prevent cells from undergoing neoplastic trans-

formation beyond the cell types, and dysregulation of mC to

hmC conversion might, at least in part, explain why aging is

an ultimate risk factor in various types of cancer.

Our study implies that TET3 expression is important for

genomic hmC decrease during aging in T cells. Decrease in

the hmC content of mitochondrial DNA in the frontal cortex,

however, was not accompanied by alteration of TET1-3

mRNA levels.27 Thus, the hmC content could be changed in

an age-dependent manner in multiple cell systems, but the

changes in regulation of hmC are variable according to the

cellular context. The mechanisms of the age-dependent de-

crease of hmC content and the impact of such alteration in

age-related T-cell dysfunction should be clarified in future

study.
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Fig. 3. Correlation between the TET1, TET2, and TET3 mRNA expression levels and the genomic hmC content in human T cells.

mRNA expression levels of TET1, TET2, and TET3 were compared with hmC content in human T cells. (3a) TET1 relative expression

vs. hmC content. (3b) TET2 relative expression vs. hmC content. (3c) TET3 relative expression vs. hmC content.

Fig. 4. Schematic illustration of correlation between DNA hy-

droxymethylation and TET3 expression in the aging process in

human T cells. mRNA expression levels of TET1 and TET3 de-

creased with age, while those of TET2 were not influenced by age.

The genomic hmC content was correlated with the TET3 mRNA

expression level, but not with TET1 and TET2 mRNA expression

levels.
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