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Review Article

Toll-like Receptor
―A Potent Driving Force behind Rheumatoid Arthritis―

Michiaki Takagi

Toll like receptor (TLR), one of the key functions of innate immune system, can recognize not only exogenous pathogen-
associated molecular patterns, namely PAMPs, but also endogenous molecules created upon tissue injury, sterile inflammation
and degeneration. Endogenous TLR ligands are called as damage-associated molecular patters (DAMPs), including endogenous
molecules released by activated and necrotic cells, and extracellular matrix molecules. DAMPs are also known as alarmins.
TLR research has brought about new insights in the rheumatic diseases. Previous reports suggest that TLRs and the signal
pathways intensively contribute to the pathogenesis of rheumatoid arthritis (RA) and other arthritic conditions with interaction of
various TLR ligands. Accumulated knowledge of TLR system is summarized to overlook TLRs and the signaling pathway in
arthritis conditions, with special reference to RA. 〔J Clin Exp Hematopathol 51(2) : 77-92, 2011〕

Keywords: Toll-like receptor, rheumatoid arthritis, pathogen-associated molecular pattern, damage-associated molecular pat-
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INTRODUCTION

Rheumatoid arthritis (RA) is one of the terrible disasters
of musculoskeletal system, like repeated tsunami attacking
joints by conscious or unconscious manner. If timely therapy
fails to calm disease activity down, persistent inflammation
leads to severe bone and joint destruction, often combined
with serious extraarticular manifestations. Inflammation has
been recognized as one of the host immune responses to both
internal and external threats. Various mediators have been
identified and linked to the physiologic and pathologic roles
of inflammation. Complicated inflammatory reactions found
in RA are not merely incidental, but rather, drive and define
the pathologic state. Better understanding of molecular and
cellular mechanisms responsible for inflammation would pro-
vide patients with RA relief from pain and disability. The
pathogenesis of RA is probably attributed to interplay of
genetic and environmental factors, in which immune response
plays a central role. However, in spite of intensive research,

the precise mechanism is not elucidated yet, and the studies
often have been apt to focus on the system of adaptive im-
munity rather than innate one.

Immune response is induced by not only microbial infec-
tion, but also sterile tissue damage and degeneration. This
paradox was first explained by Matzieger in 1994, who pro-
posed that immune system is designed to fight with both
external and internal dangers, rather than mediate recognition
of non-self over self.1 The following question was how organ-
isms recognized and efficiently responded to the dangers.
Three main families of sensing molecules, termed “pattern
recognition receptors (PRRs)”, have been identified to give
the answer. Mammalian cells can sense danger signals from
both pathogens and damaged tissues via PRRs of innate im-
mune system, which evolved earlier than the highly diverse
receptors of adaptive immune system equipped in vertebrate.
The innate sensors include Toll-like receptors (TLRs), reti-
noid acid inducible gene (RIG)-I like receptors (RLRs), and
nucleotide-binding oligomelization domain (NOD)-like recep-
tors (NLRs) (Table 1). All the abbreviations of the molecules
and related structures used in this review were summarized
alphabetically in the Appendix. TLRs are located on the cell-
surface and endosome. They can sense exogenous
“pathogen-associated molecular patterns (PAMPs)”2 and en-
dogenous “damage-associated molecular patterns (DAMPs)”.
They are also known as alarmins.3,4 RLRs are cytosolic sen-
sors for nucleic acids. RIG-1 and MAD5 can sense RNA
species. DAI recognize DNAs. NLRs include NOD-1,
NOD-2, NLRP and AIM2. The evoked signaling by these
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sensors can promote either the activation and nuclear translo-
cation of transcription factors (IRF, NF-kB and AP-1) that
derive expression of cytokines, such as IFNa/b, TNF and
proIL-1b, or the assembly of the caspase-1 inflammasome and
subsequent maturation of IL-1b from proIL-1b5-8 (Fig. 1).

The host responses via the sensors initially can work to
eliminate infection and are beneficial in most cases, but the
defective regulation may result in autoimmune and/or autoin-
flammatory responses, many of which present rheumatic
manifestations.6 Essential keys of autoimmune response in-
clude the nature and relative contribution of endogenous ver-
sus exogenous stimuli, the abnormalities that override the
normal discrimination between self and foreign antigens, and
the interplay between innate and adaptive immune systems.
RA and systemic lupus erythematosus (SLE) are representa-
tive diseases. Recognition of self nucleic acids by TLRs
seems to be the major pathogenetic mechanism in SLE. In
RA, recognitions of products from microbes and damaged
tissues by the TLRs and other innate sensors are likely to
contribute the pathogenesis. By contrast, several genetic mu-
tations, that either provoke or permit uncontrolled activation
of the innate immune system, can trigger “autoinflammation”,
in which IL-1b disorders including NLRP3/ASC/capase-1
(IL-1 convertase) and their related pathway play a major role.
They often accompany with rheumatic manifestations with
arthritis, i.e., Blau syndrome, cryopyinopathies, familial
Mediterranean fever, and pyogenic arthritis with pyoderma
gangrenosum. Excessive deposition of crystal also induces
the host reaction as a result of autoinflammatory reaction,
seen such as gout and pseudogout. Psoriatic arthritis,
systemic-onset juvenile idiopathic arthritis, adult-onset Still’s
disease, Schnitzler syndrome and Gaudaloupe variant periodic
fever syndrome are categorized as possible candidates of
autoinflammatory diseases.6,8-10

Recent TLR research has brought about new insights in
the pathogenesis of many rheumatic diseases. Moreover, pos-
sible mechanism of collaboration and cross-talk among innate
immune sensors have been discussed. Increase level of cryo-

pyrin, which is linked to caspase-1 and one of central compo-
nents of inflammasome, was identified in RA synovium.11

Biglycan, one of extracellular matrix components in cartilage,
also increased12,13 and activated NLRP3 inflammasome via
TLR2 and TLR4.14 RA, psoriatic arthritis, Blau syndrome and
gout are the possible candidates, involving interplay of the
sensors.10,15-17 In this review, accumulated knowledge of
TLRs and the signaling is summarized with discussions of
possible pathogenesis of arthritis, with a special reference to
RA.

TLRs AND PAMPs

Toll receptor was originally identified in Drosophila mel-
anogaster as a receptor essential for the establishment of the
dorso-ventral pattern in developing embryos.18 In 1996,
Hoffmann and Lemaitre demonstrated that Toll-mutant flies
were highly susceptible to fungal infections.19 A mammalian
toll homologue was first reported in 1997 and named TLR.20

TLRs belong to the family of PRRs, and consist of main
innate immune sensors, together with RLRs and NLRs. So
far, 13 distinct mammalian TLRs have been identified 10 of
which are functional in humans (TLR1-10), and 11 in mice
(TLR1-7, TLR9, TLR11-13).20,21 TLR1, 2, 4, 5, 6, 10 and 11
are located on the cell surface, whereas, TLR3, 7, 8 and 9 are
located in the endosome. The high levels and broadest spec-
tra of TLR expression have been observed in variety of cell
types in the immune system, including monocytes/
macrophages,23-28 dendrit ic cells (DCs),23-26,29-31

neutrophils,29,32 B cells,26 T cells26 and NK cells.26,33,34

Moreover, TLRs have been identified in synoviocytes,35,36

f ibroblasts,37,38 osteoblasts,39,40 osteoclasts ,41,42

chondrocytes43-45 and endothelial cells.27,46

TLRs can recognize a wide variety of PAMPs derived
from bacteria, fungi, parasites and viruses, which were sum-
marized in Table 2 with references (47-74). They act as
homodimers or heterodimers of type I trans-membrane glyco-
proteins, each comprising a ligand-binding ectodomain con-
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Table 1. Three main families of innate immune sensors

Family Location Representatives Ligands

TLRs Cell surface TLR1, 2, 4, 5, 6, 10 PAMPs/DAMPs
Endosome TLR3, 7-9 PAMPs/DAMPs

RLRs Cytosol RIG-1 (RNA helicase) ssRNA
MD5 (RNA helicase) dsRNA
DAI microbial/mammalian DNA

NLRs Cytosol NOD1 (NLRC1/CARD4) g-D-gmda of GNB
NOD2 (NLRC2/CARD15) MDP both of GPB/GNB

Cytosol/Inflammasome NLRP3 (NALP3)
AIM2

PAMPs/DAMPs, changes in ionic and redox milieu
DNA

Representative innate sensors are summarized with representatives identified in human.
GPB, gram-positive bacteria; GNB, gram-negative bacteria; other abbreviations; see Appendix.
Type of families, location of the receptor and the signal pathways are illustrated in the Fig. 1.
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taining 19-25 tandem leucin-rich repeat (LRR) motifs, a sin-
gle transmembrane helix, and a cytoplasmic Toll/interleukin
(IL)-1 receptor (TIR) domain, which is required for down-
stream signaling. Combination of TLR and corresponding
ligand of PAMP includes TLR1-TLR2 heterodimer/triacyl
lipopeptides, TLR2-TLR6 heterodimer/diacyl lipopeptides,
TLR3 homodimer/dsDNA, TLR4 homodimer/LPS, TL5 ho-
modimer/flagellin, TLR7 and TLR8 homodimers/ssRNA,
TLR9 homodimer/CpGDNA, and TLR11 homodimer/proto-
zoan profiling-like protein (Fig. 2).21,22,75-77

TLR extodomain has a typical horseshoe-shaped solenoid
structure. The inner surface of concave is mostly formed by
parallel b-strands and the outer surface of convex has various
secondary structural elements, such as loops of different
lengths, a-helices and right-handed helical structures. Crystal

structure analyses suggest that TLR agonists can promote
TLR dimerization by stabilizing the interaction between the C
termini of the horseshoe-shaped modules, followed by trigger
of signaling. The cytoplasic TLR domain displays a compact
globular confirmation formed by five parallel b-strands and
five a helices connected by flexible loops.78,79 To the contrary,
no crystal structures of TLR-DAMP complex have been re-
ported yet.

DAMP RECOGNITION BY TLRs

TLRs can recognize not only exogenous PAMPs, but also
DAMPs of endogenous molecules. Intracellular molecules
released into the extracellular milieu by activated and necrotic
cells, as well as extracellular matrix molecules either up-
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Fig. 1. Representative human innate sensor systems is demonstrated. Signals are generated by exogenous and endoge-
nous ligand stimulation via sensors. The innate sensors includes TLRs, RLRs and NLRs. TLRs are located in the cell
membrane and endosome, They can sense PAMPs of exogenous origin and DAMPs of endogenous origin. RLRs are
cytosolic sensors for nucleic acids. RIG-1 and MAD5 can sense RNA species. DAI recognize DNAs. NLRs include
NOD-1, NOD-2, NLRP and AIM2. The signaling induced by sensor-ligand interactions can promote either the
activation and nuclear translocation of transcription factors (IRF, NF-kB and AP-1) that derive expression of cytokines,
such as IFNa/b, TNF and proIL-1b, or the assembly of the caspase-1 inflammasome and subsequent maturation of IL-
1b from proIL-1b.
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regulated or degraded by tissue injury, sterile inflammation
and degeneration. They all have potential to work as
DAMPs. Definite, probable or possible endogenous TLR
ligands of DAMP have been also reported and can be catego-
rized as proteins/peptides, fatty acid/lipoproteins, proteogly-
can/glycosaminoglycans, and nucleic acids/protein-nucleic
acids complex, which was summarized by Piccinini and
Midwood.7 Proteins/peptides include ; b-defensin-3 for
TLR1, HSP60, HSP70, gp96, HMGB1, HMGB1-nucleosome
complex, b-defensin-3, surfactant proteins, eosinophil-
derived neurotoxin, and antiphospholipid antibodies for
TLR2, HMGB1, fibronectin EDA, fibrinogen, tenascin C,
surfactant proteins, b-defensin-3, HSP60, HSP70, HSP72,
HSP22 (B8), gp96, S100A8 (Mrp8), S100A9 (Mrp14), neu-
trophil elastase, antiphospholipid antibodies, and lactoferrin
for TLR4, antiphospholipid antibodies for TLR7 and TLR8.
Fatty acids/lipoproteins include ; serum amyloid A for TLR2,
serum amyloid A, oxidized LDL, and saturated fatty acid for
TLR4. Proteoglycans/glycosaminoglycans include ; bigly-
can, versican, and hyaluronic acid fragments for TLR2, bigly-
can, heparan sulfate fragments, and hyaluronic acid fragments
for TLR4. Nucleic acids/protein-nucleic acid includes
dsRNA for TLR3, ssRNA for TLR7 and TLR8, and IgG-
chromatin complexes for TLR9. Thus, TLRs can react with

both PAMPs and DAMPs, and represent a key molecular link
among microbial infection, tissue injury, sterile inflammation
and degeneration. Crystal structure analyses have proposed
possible diverse modes of exogenous ligand recognition by
TLRs, involving TLR homodimerization and heterodimeriza-
tion, as well as direct TLR-ligand interactions or interactions
with co-receptors and accessory molecules.78-82

CO-RECEPTORS AND ACCESSORY

MOLECULES

Co-receptors and accessory molecules are known to assist
PAMP recognition together with some TLRs,80,82 e.g., MD-2,
CD14, Mrp8, RP105 and PAR-2 for TLR4 homodimer, and
CD14, CD36 and dectin for heterodimers of TLR1-TLR2 and
TLR1-TLR6.83-85 MD-2 and CD14 can work to assist DAMP
recognitions, independently or together.7 In addition, P2X4/
P2X7 was shown to activate TLR2 and TLR4 by ligand
stimulation of biglycan in macrophages.14 HMGB1 mediates
activation of plasmacytoid DCs and B cells through TLR9 by
DNA-containing immune complexes with immunoglobulin
superfamily member RAGE.86 CD44, together with MD-2,
can assist recognition of hyaluronic acid by TLR4.87
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Table 2. Exogenous TLR ligands derived from organisms

Receptor Ligand Origin of ligand References

TLR1 Triacyl lipopeptide Bacteria and mycobacteria 47
Soluble factors Neisseria meningiditis 48

TLR2 Lipoprotein/ lipopeptides Various pathoges 49
Peptideglycan Gram-positive bacteria 50, 51
Lipoteichoic acid Gram-positive bacteria 51
Lipoarabinomannan Mycobacteria 52
Phenol-soluble modulin Staphylococcus epidermis 53
Glycoinositolphospholipid Trypanosoma cruzi 54
Glycolipid Treponema maltophilum 55
Porins Neisseria 56
Atypical LPS Leptospira interrogans 57
Atypical LPS Porphyromonas gingivalis 58
Zymosan Fungi 59

TLR3 dsRNA Viruses 60
TLR4 LPS Gram-negative bacteria 61

Taxol Plants 62
Fusion protein Respiratory syncytial virus 63
Envelope protein Mouse mammary-tumor virus 64
Hsp70 (exogenous) Clamydia pneumoian 65, 66

TLR5 Flagellin Bacteria 67
TLR6 Diacylpolypeptide Mycoplasma 68

Lipoteichoic acid Gram-positive bacteria 61
TLR7 ssRNA Viruses 69, 70
TLR8 ssRNA Viruses 69
TLR9 CpG DNA Bacteria and viruses 71
TLR10 Di-acylated peptide ? ND 72
TLR11 ND Uropathogenic bacteria 73

Profilin like protein Toxoplasma Gondi 74

ND ; not determined. Abbreviations : see Appendix.



11-011.mcd  Page 5 11/11/21 12:08  v4.21

TLRs in Rheumatoid Arthritis

81

TLR1/TLR2 

TLR2/TLR6 

TLR4 

Lipopeptides LPS 

Cell membrane 

Cytosol 

Nucleus 

IRF3 NF- B, AP-1 

MyD88 TRIF 

TRAF6 

IRAKs 

TAK1 

IKK  

MAPKs 

RIP1 

TRADD 

TRAF2 

TRAF3 

TBK1 

IKK  

TNF ProIL-  IFN  IFN  

TLR5 

Flagellin 

Fig. 2. Representative signal pathway of human TLRs in the cell membrane and endosome are illustrated.
TLR signalings take two major routes of adaptors, MyD88 and TRIF, which bind directly or indirectly to
TLRs through TIR-domain interactions. (2a): MyD88 promotes the recruitment of the TRAF6 (ubiquitin
ligase) and several kinase complex as IRAKs, TAK1, IKKabg and MAPKs. Subsequent phosphplilations and
ubiquitinations promote translocation of transcription factors, NF-kB and AP-1, which can induce production
of messenger RNA, such as TNF, proIL-1b and other inflammatory molecules. On the other hand, TRIF can
engage to interact with TRIF3 and kinases of TKB1 and IKKe, followed by IRF3 activation. Expression of
IFNb and subsequent induction of IFNa are induced by activated IRF3, together with NF-kB and AP-1. TRIF
also mediates translocation of NF-kB and AP-1 via RIP1, TRADD and TRAF2. The pathway of TLR1/2,
TLR2/6 and TLR4 is seen in conventional or myeloid dendritic cells (DCs), and also macrophages. The
pathway of TLR5 is estimated to use same pathway in macrophages based on the related reports. (2b): By
contrast, in plasmacytoid DCs, engagement of MyD88 leads to recruitment of ubiquitin kinases of TRAF3
and TRAF6, followed by recruitment of kinases of IRAKs, TAK1, IKKabg and MAPKs. This induces
activation transcription factor, IRF7, followed by expression of IFNa, and also NF-kB and AP-1, followed by
TNF and other inflammatory molecules.

Cell membrane 

Cytosol 

Nucleus 

NF- B, AP-1 

TRIF 

IRAKs 

TAK1 

IKK  

MAPKs 

RIP1 

TRADD 

TRAF2 

TRAF3 

TBK1 

IKK  

TNF ProIL-  
IFN  

IFN  

Endosome 
dsRNA ssRNA CpG DNA 

TLR3 TLR7 TLR9 

MyD88 

TRAF3, 6 

IRF3 

NF- B, AP-1 

IRF7 

IRAKS 

TAK1 

IKK  

MAPKs 

TNF IFN  



11-011.mcd  Page 6 11/11/21 12:08  v4.21

TLRs AND THE ADAPTORS FOR SIGNALING

The initial role of TLRs is to function as sensors for
danger signals of PAMPs and also bind DAMPs to initiate
innate host responses.19,20,67 Binding of TLR ligands to the
receptor triggers conformational rearrangements of the cyto-
plasmic TIR domains and recruitment of specific adaptors via
homotype TIR-TIR interactions. The main adaptor molecules
include MyD88, TRIF (also known as TICAM-1), TIRAP
(also known as Mal), and TRAM (also known as TICAM-
2).88,89 MyD88 and TRIF are main adaptors. Most TLRs use
MyD88. TLR4 uses both MyD88 and TRIF, and TLR3 uses
TRIF. In spite of direct interaction of intracellular portion of
TLRs with MyD88 or TRIF, TLR1, 2, 4 and 6, which are
located in the plasma membrane, require additional adaptors
for the signaling to down-stream; e.g., TIRAP for MyD88,
and TRAM for TRIF. Interaction of adaptor molecules are
followed by recruitment of kinases and ubiquitn ligases, thus
leading to activation and nuclear translocation of several tran-
scription factors, such as NF-kB, AP1 and IRF 3/7, which was
dependant on the cell types of innate immune system5,77,90

(Fig. 2a and 2b).
Ligand-TLR interactions lead to up-regulation of proin-

flammatory cytokines, chemokines, and chemokine receptors,
such as TNF-a,91 IL-1b,92 IL-691-93 and IFN-a/b/g,91,93-95 CC
(or b) chemokines93,95,96 and CXC (or a) chemokines.93,95

TLR-ligand interactions also up-regulate co-stimulatory mole-
cules, such as intercellular adhesion molecule-1,92 lymphocyte
function-associated antigen-1 and -3.94 Co-stimulatory mole-
cules are essential for the induction of pathogen-specific
adaptive immune responses.97 Thus, TLRs link innate host
responses to adaptive immunity.98,99

INHIBITORY REGULATORS AND POSSIBLE

MEHANISM FOR TLR SIGNALING

Immune system needs to constantly strike a balance be-
tween activation and inhibition to escape from detrimental
and inappropriate inflammatory responses as well as inad-
equate and lower host defense. TLR system must be tightly
regulated both in physiologic and pathologic states, otherwise,
either insufficient or excessive reactions endanger the host
severe or lethal events in microbial infections. Furthermore,
immune-mediated aseptic inflammatory diseases are evoked.
Negative regulators of TLR signaling have been reported,
which may affect the pathway at the levels of extracellular
space, cell membrane, cytosol and endosome.77,87,100-102

Currently known negative regulators and the candidates, to-
gether with their corresponding TLRs and posible inhibitory
mechanisms, are listed in Table 3 with references (103-136).
The possible regulators include EGCG and soluble TLR2/4 in
the extracellular space, TMED1, TRAILR and SIGIRR on the
cell membrane, and A20, BCAP-L, EGCG, IRAKM, IRF4,

MSK1, MSK2, NOD2, PI3K, SHIP-1, SOCS1, symvastatin,
TANK, TcpB, TcpC, TOLLIP, Triad3A, TRIB1, TRIB3 and
VV protein A46R in the cytoplasm, and chroloquine, citalo-
pram, fluoxetine, and NC-2300 in the endosme.

In each binding process of TLR and ligand, it is interest-
ing and noteworthy that PAMPs and DAMPs may have po-
tential to occupy the same or neighboring biding sites on
TLRs to modulate the reaction each other. For example,
surfactant protein A was shown to bind extracellular domain
of TLR2 and down-regulate induction of NF-kB and TNF-a
secretion, competing the same receptor with peptidoglycan
and zymosan.137,138 This suggests possible interaction between
the different ligands, which can bind to same receptors, lead-
ing to modification of activated signal pathways depending
type, amount and distribution of the ligands both in physio-
logical and pathologic conditions. Complex of TLR-like mol-
ecule, RP105 and MD-1 can acts as TLR4 decoy receptor.
They can inhibit TLR4 activation to compete the receptor
with microbial ligands in DCs.139 Cathepsin K inhibitor, NC-
2300 and disease-modifying anti-rheumatic drug, chloro-
quine, showed inhibitory effect of TLR9-CpG DNA interac-
tion in DCs.135 Selective serotonin reuptake inhibitors have
been known to have anti-inflammatory effect, which was
confirmed by systemic administration of fluoxetine and cita-
lopam to suppress the signaling of endosomal TLR3, 7 and 9
in murine collagen-induced arthritis model and cell culture of
macrophages and fibroblasts.136

EXPERIMENTAL ARTHRITIS INDUCED BY

PAMPs AND DAMPs

Experimental models of acute and chronic synovitis indi-
cated the relevant pathogenesis via TLRs and their ligands.
Systemic injection of streptococcal cell wall could induce
arthritis,140 which has been followed by numerous studies
using PAMPs to evoke arthritis in animal models. Microbes-
derived TLR ligands, such as peptideglycan for TLR2,141

dsRNA via TLR3,142 LPS for TLR4143 and CpGDNA for
TLR9144 have frequently been used for to provoke or acceler-
ate experimental arthritis. TLR4 was reported to be involved
in the chronicity and erosive destruction of streptococcal cell
wall-induced arthritis, which was coincident with the antigen-
specific IL-17 response.145

DAMP can also induce arthritis. Endogenous mitochon-
drial DNA, containing unmethylated CpG motifs and oxida-
tively damaged products, could evoke arthritis by monocyte/
macrophages, but not B cells or T cells.146 Intraarticular
injection of tenascin-C promoted joint inflammation in vivo in
mice. Mice that did not express tenascin-C showed rapid
resolution of acute joint inflammation and were protected
from erosive arthritis. The synthesis and tissue expression
were induced in myeloid cells upon tissue injury or infection
Thus, tenascin-C acted as TLR4 activator and novel autocrine
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loop in the arthritis.147,148 S100A8 is a strong promoter of
activating FcgRI and FcgRIV in macrophages through the
activation of TLR4 and act as a regulator of FcgR expression
in inflamed synovium in chronic experimental arthritis.149

TLRs AND THE ADAPTORS IN RA SYNOVIAL

TISSUES

Synovial tissues from RA joints expressed TLR2 predom-
inantly at sites of attachment and invasion into cartilage and
bone, mostly in synovial fibroblasts, but not in macrophages,
which expression was enhanced not only by IL-1b and TNF-
a, but also LPS.150 Immunoractivities of TLR2,91,150,151

TLR3,151,152 TLR491,151 and TLR7152 were demonstrated in RA
synovial lining and sublining, but the precise cellular identifi-
cation was not done. In RA synovium of early stage, in-
creased expression of TLR3 and TLR4 were demonstrated as
well as that of TLR2, 3 and 4 in long-lasting RA synovitis.153

Current analyses using double immunofluorescent staining

revealed tissue localization of TLR1, 2, 3, 4, 5, 6 and 9, as
well as adaptor molecules in inflamed rheumatoid synovium.
TLR1, 2, 3, 4, 5, 6, 9, MyD88, TIRAP/Mal and
TRIF/TICAM-1 were strongly labeled in DCs both of mye-
loid and plasmacytoid types, moderately in type A
macrophage-like lining cells/ intimal macrophages and
weakly-to-moderately in type B fibroblast-like lining cells/in-
timal fibroblasts. CD3+/CD4+ and CD3+/CD8+ T cells and
CD20+ B cells in perivenular areas and in lymphoid follicles
were moderately TLRs and weakly adaptor positive. In os-
teoarthritic synovium, TLRs and the adaptors were only very
weakly immuno-labeled in vascular, lining and inflammatory
cells.36 Taken together, the data suggested that RA synovium
well-equipped with TLRs and adaptors, which implies high
and prompt responsiveness to the external and internal stimu-
li, namely, PAMPs and DAMPs.
In vitro analyses on TLRs of peripheral blood mononuclear

cells demonstrated that TLR1 was expressed monocytes, poly-
morphonuclear leukocytes, B cells, T cells and NK cells.
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Table 3. Possible negative regulations of TLRs and the suggested mechanisms

Molecules Affected TLR Suggested mechanism Reference

Soluble extracelluar regulators
EGCG TLR2, 4 Interaction with 67LR or TOLLIP 103, 104
soluble TLR2 TLR2 TLR2 antagonist 105
soluble TLR4 TLR4 Block of interaction of TLR4 and MD-2 106
Transmembrane regulators
TMED1 (STL2) TLR2, 4, 9 Sequestration of MyD88 and TIRAP 107
TRAILR TLR2, 3, 4 Stabilization of IkBa 108
SIGIRR TLR4, 9 Interaction with TRAF6 and IRAK 109, 110
Intracytosolic regulators
A20 TLR2, 3, 4, 5, 9 De-ubiquitylation of TRAF6 111, 112
BCAP-L TLR4 Tyrosine phosphorylation 113
EGCG TLR2, 4 Interaction with 67LR or TOLLIP 103, 104
IRAKM TLR4, 9 Inhibition of IRAK1 phosphorylation 114
IRF4 NE Interaction with MyD88 115
MSK1, 2 TLR4 Regulation of IL-1ra 116
MyD88s TLR4 MyD88 antagonist 117, 118
NOD2 TLR2 Suppression of NF-kB 119
PI3K TLR2, 4, 9 Inhibition of p38, JNK and NF-kB 120
SHIP-1 TLR3, 4 Inhibition of TBK-1 121, 122
SOCS1 TLR3, 4, 9 Suppression of IRAK/TRIF 123, 124, 125
Simvastatin TLR2 Prevention of Rho A activation 126
TANK NE Suppression of TRAF6 127
TOLLIP TLR2, 4 Autophophorylation of IRAK1 128, 129
Traid3A TLR4, 9 Ubiquitylation of TLRs 130
Tcp TLR/MyD88 Inhibition of TLR-MyD88 131
TRIB1 NE Inhibition of NF-IL6 132
TRIB3 TLR2 Inhibition of MAPK 133
VV protein A46R TLR/ MyD88 Inhibition of MyD88, Mal, TRIF 134
Intraendosomal
Chroloquine TLR9 Inhibition of TLR9-CpG DNA 135

Citalopram TLR3, 7, 8, 9
Possible direct blockade of the receptors or share
accessory molecule

136

Fluoxetine TLR3, 7, 8, 9
Possible direct blockade of the receptors or share
accessory molecule

136

NC-2300 TLR9 Inhibition of TLR9-CpG DNA 135

NE; not examined, Abbreviations; see Appendix.
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TLR2, 4 and 5 were expressed in myelomonocytic elements.
TLR3 was only expressed in DCs, wherein maturation induced
by bacterial products or cytokines was associated with reduced
expression.29 Same type of analyses revealed that TLR1 and
TLR6 were expressed in all cell types of monocytes, plasma-
cytoid DCs, B cells, NK cells and T cells in peripheral blood.
Evident expression of TLR2, 4 and 5 in monocytes, and that of
TLR7 and 9 with high responsiveness to CpG DNA were
observed.26 In addition, DCs in blood sample expressed TLR1,
2, 3, 4, 5, 6 and 8 in myeloid type, and TLR7 and 9 in
plasmacytoid type.154 Immature monocytic DCs of blood ex-
pressed TLR1, 2, 3, 4 and 5, but evidently expressed TLR3
with decrease of TLR1, 2, 4 and 5 after maturation induced by
LPS.24 Monocytes/macrophages derived from bone marrow
showed expression of TLR2, 4, 5 and 9.27,28 Embryonic fibro-
blasts showed potential to have responsiveness to various type
of ligands via TLR1, 2, 3, 4, 5, 6, 7, 8 and 9. Thus, when
compared with mesenchymal cell types, hematopoietic cell
types showed relatively restricted presentation of TLRs.
There is discrepancy between immunohistochemical analyses
and in vitro experiments. In addition to the presence of immu-
noreactive cells of TLR2 and 491 as well as those of TLR 3 and
7152 in synovial lining and sublining intima, well equipment of
TLR1, 2, 3, 4, 5, 6 and 9 in monocytes/macrophages, DCs, B
cells and T cells in RA synovium were observed by
immunohistochemisty.36 Marked inflammation in RA synovi-
um can produce a variety of mediators and DAMPs, which
may influence expression of TLRs in the diseased tissues,
being with various states of maturation and/or activation of
each cell type. Thus, it may contribute to different profiles of
TLR expressions between inflamed RA tissues and in vitro
studies with blood samples. It would be studied precisely,
with careful further evaluation of the specificity of the antibod-
ies used in immunohistochemistry. Embryonic fibroblasts,38

cell lines155 and cancer cells were also known to display vari-
ous types of TLR.156 It is important to study how different vital
circumstances affect expression of TLRs in cell types and
tissues, as well as examination of the difference between in
vivo and in vitro.

PAMPs AND DAMPs IN RA SYNOVIAL TISSUES

Possible infectious causes of RA have been long sug-
gested by potential pathogenetic mechanisms; mycoplasma
by direct synovial infections and super antigens, parvovirus
B19 and retrovirus by direct synovial infection, enteric bacte-
ria and Epstein-Bar virus by molecular mimicry of QKRAA
of HLA-DR b1 region, mycobacterium by molecular mimicry
of proteoglycans, QKRAA and immunostimulatory DNA, and
bacterial cell wall by macrophage activation.157 Anaerobic
bacterial DNA and high levels of antibodies against these
bacteria have been detected in the serum and synovial fluid
from patients with early and late stage of RA.158,159 Oral

bacteria, such as prophyromonas gingivalis by molecular
mimicry of citrullinated enolase, has been suggested to be
involved in triggering of the disease.160 Apart from such pos-
sible combined effect of genetic and environmental factors,
there is also increasing awareness that innate immune system
could directly contribute to onset and lasting course of RA.
High percentage of bacterial DNA was detected in the RA and
reactive arthritis patients.161 In addition, bacterial peptidegly-
cans was demonstrated in the synovial macrophages.162

Exogenous PAMPs can evoke initial immune response via
TLRs, which has been implicated to be involved in triggering
of joint inflammation and disease flares in RA.

In RA synovial tissues and/or fluid, several DAMPs have
been suggested to act as st imulators of TLRs ;
biglycan,12,13,163 f ibrinogen,164,165 f ibronectin EDA
(FENDA),166,167 HMGB1,168 HSP70,169,170 HSP B8
(HSP22),171 low molecular weigh hyarulonic acid,172,173

S100A8/9174-176 and tenascin-C.148,177-179 These molecules
have potential to stimulate TLRs, thus evoke and/or enhance
innate immune system, and couple with adoptive immune
reaction in RA.

CONCLUSION

Extensive research revealed that identification of recep-
tors, ligands and the molecular pathway on TLR system have
contributed to better understanding of the pathogenesis of RA
and allied arthritic conditions. Further analyses on the inter-
play between TLRs and other innate sensors, combined with
inhibitory mechanisms by negative regulators, would provide
more precious information on arthritis responsible for inflam-
mation and joint destruction induced by not only autoimmune
and autoinflammatory responses, but also infection and sterile
degeneration. This will be beneficial for the diagnostic and
therapeutic strategies, and also contribute to prevention or
progress of the diseases.
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Appendix. List of abbreviation for molecules and related structures

ASC apotosis-associated speck-like protein containing a caspase activation and recruitment domain
AIM2 absent in melanoma 2
AP-1 activating protein-1
BCAP-L full length B cell adaptor for phosphatidylinositol 3-kinase
CARD caspase activation and recruitment domain
CIIA MHC class II transcription activator
CD cluster of differentiation
CpG DNA DNA containing unmetylated CpG motifs
DAI DNA-dependant activator of IFN regulatory factor
DAMP damage-associated molecular pattern
DNA deoxyribonucleic acid
ds double-stranded
EDA extradomain-A
ERK extracellular signal-regulated kinase
FENDA fibronectin EDA
FcgR fragment crystallizable gamma receptor
HET-E heterocaryon incompatibility locus E protein from Podspora anserine

Hsp heart shock protein
HMGB high-mobility group box
IFN interferon
IL interleukin
IL-1ra IL-1 receptor antagonist
IRAK interleukin-1 receptor-associated kinase
IRF interferon regulatory factor
IKK inhibitor of kinase
IkB inhibitor kappa B
JNK c-Jun N-terminal kinase
gp96 glycoprotein 96
g-D-gmda g-D-glutamyl-meso-diaminopimelic acid
LDL low density lipoprotein cholesterol
LPS lipopolysaccaride
LR laminin receptor
LRR leucine-rich repeat
MAD5 melanoma differentiation-associated gene 5
Mal MyD88-adapter like
MAPK mitogen-activated protein kinase
MD-1, 2 myeloid differentiation factor-1, 2
MDP muramyldipeptide
MHC major histocompatibility complex
Mrp myeloid-related protein
MSK1, 2 mitogen- and stress-activated kinase
MyD88 myeloid differentiation primary response protein 88
MyD88s short form of MyD88
NACHT NAIP, CIIA, HET-E and TP1
NAIP neutral apoptosis inhibitor protein
NALP NACHT, leucine-rich repeat, and pyrin-domain-containing protein
NF-IL6 nuclear factor interleukin 6
NF-kB nuclear factor-kappa B
NLR NOD-like receptor
NOD nucleotide-binding oligomelization domain
NLRP NLR with a pyrin domain
PAMP pathogen-associated molecular pattern
PAR-2 proteinase-activated G-protein-coupled receptor-2
PI3K phosphatidylinositol 3-kinase
PRR pattern recognition receptor
RAGE receptor for advanced glycation end products
RIP receptor interacting protein
RIG-1 retinoid acid inducible gene-1
RLR RIG-1 like receptors
RNA ribonucleic acid
RP105 radioprotective 105
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SHIP src homology 2 domain-containing inositol-5-phosphatase
SIGIRR single immunoglobulin and toll-interleukin 1 receptor (TIR) related (identical to TIR-8)
SOCS suppression of cytokine signaling
ss single-stranded
ST2L suppression of tumorigenicity 2L
TANK TRAF family member-associated NF-kB activator
TBK TANK-binding kinase
TcpB, C TIR-domain containing protein ; B (Brucella melitensis), C (E. coli)
TIR Toll/IL-1 receptor
TICAM-1,2 TIR-containing adaptor molecule-1, 2
TIRAP Toll/interleukin receptor domain-containing adaptor protein
TLR Toll-like receptor
TMED transmembrane emp24 protein transport domain
TNF tumor necrosis factor
TOLLIP Toll-interacting protein
TP1 telomerase-associated protein 1
TRADD TNF receptor 1-associated death domain
TRAF TNF receptor-associated factor
TRAILR TNF-related apoptosis-inducing ligand receptor
TRAM TRIF-related adaptor molecule
TRIB tribble

TRIF TIR domain-containing adapter inducing IFNß
VV A46R vaccinia virus protein A46R
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