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IgA Production and Tonsillar Focal Infection
in IgA Nephropathy

Hongxue Meng,1) Hiroya Ohtake,1) Akihiro Ishida,2) Nobuo Ohta,2) Seiji Kakehata,2)

and Mitsunori Yamakawa1)

IgA nephropathy (IgAN), the common primary glomerulonephritis, is a tonsillar focal infection characterized by the

qualitative abnormality of IgA in circulation and IgA deposition in the renal mesangium. Mesangial deposition of IgA, which is

composed predominantly of poorly galactosylated polymeric IgA1 (pIgA1), seems to be the initiating event in the pathogenesis

of IgAN. The origin of poorly galactosylated IgA, however, remains unclear. Recent studies suggest that the mesangial

polymeric IgA1 deposition could be derived from mucosally primed plasma cells. B cells may undergo IgA class switching to

acquire the expression of IgA via T-cell-dependent or T-cell-independent pathways in mucosa-associated lymphoid tissue and

then differentiate to IgA plasma cells or home in on systemic sites. Dendritic cells, including plasmacytoid dendritic cells and

another type of antigen-retaining cell, follicular dendritic cells, have an irreplaceable role in IgA class-switch mechanisms by

producing IgA-inducing signals. Furthermore, an increased number of pIgA1-secreting plasma cells in the bone marrow and

tonsil, as well as increased IgA class switching, have been found in IgAN, providing a link between the mucosal immunity and

IgAN. The favorable effect of tonsillectomy on patients with IgAN showed that tonsillar focal infection may be closely related

to pIgA1 deposition in glomerular mesangium of patients with IgAN and at least a part of pIgA1 may originate from affected

tonsils. Therefore, the indication for tonsillectomy should be considered in patients with IgA nephropathy, especially at a mild

or early stage, to prevent future renal deterioration. In this paper, we focus on IgA class switching and the role of tonsils with

focal infection in IgAN. 〔J Clin Exp Hematopathol 52(3) : 161-170, 2012〕
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INTRODUCTION

Immunoglobulin A nephropathy (IgAN) is a common

cause of glomerulonephritis and of end-stage renal failure,

and was first described by Professor Berger in 1968. It is

characterized by an overrepresentation of poorly galactosy-

lated IgA1 molecules in the serum and mesangial deposition

of IgA immune complexes accompanied by mesangial prolif-

erative glomerulonephritis (Fig. 1A). It remains unclear

where the poorly galactosylated IgA1 originates and whether

there are any effective treatments for patients with IgAN.1

Recent evidence suggests that the mesangial deposition of

polymeric IgA1 in IgA nephropathy is derived from muco-

sally primed plasma cells (Fig. 1B). This may provide a link

between the mucosal immunity and IgAN. On the other

hand, IgA class switching is a significant source of IgA pro-

duction. In this review, we discuss the pathogenesis of IgAN,

the abnormal production of IgA in IgAN, the role of dendritic

cells (DC) and follicular dendritic cells (FDC) in IgA class

switching, and the relationship between tonsillar focal infec-

tion and IgA nephropathy, as well as the effectiveness of

tonsillectomy on adult and child IgAN.

THE PATHOGENESIS OF IgA NEPHROPATHY

Overview of the pathogenesis of IgA nephropathy

Mesangial deposition of IgA, which is predominantly pol-

ymeric IgA1 (pIgA1), seems to be the initiating event in the

pathogenesis of IgAN. Then, IgA accumulation in the mesan-

gium appears to be the principal trigger for the development

of mesangial proliferative glomerulonephritis, which is medi-

ated predominantly through IgA-induced activation of resi-

dent mesangial cells and local complement activation.2 Up to

60% of patients with IgAN present with recurrence of glomer-
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ular IgA deposition after renal allograft, which indicates that

mesangial IgA is probably derived from a circulating pool of

pathogenic IgA. In addition, the association of episodic mac-

roscopic hematuria with mucosal infections originally led to

the suspicion that IgAN may be intimately linked with abnor-

mal mucosal antigen handling, particularly because both me-

sangial IgA and serum IgA immune complex (IgA-IC) pre-

dominantly contain pIgA, which is normally produced at

mucosal surfaces rather than in systemic immune sites.

IgA immune system in humans

There are two subclasses of human IgA, IgA1 and IgA2,

both of which can exist in monomeric or polymeric (pIgA)

forms (Fig. 2).3 Human IgA1 and IgA2 subclasses are en-

coded by two distinct Ca1 and Ca2 genes and possess a

seemingly identical receptor-binding profile, but a different

distribution in the body.4 The major difference between IgA1

and IgA2 is the presence of an 18-amino-acid hinge region in

IgA1, which could have activity as a protease of

Streptococcus, Neisseria, and Haemophilus species.5 Its

hinge region of heavily glycosylated IgA1 contains several

sites of O-linked glycan attachments. Therefore, the physico-

chemical properties of IgA1 are always variably affected by

the tight clustering and variability of sialic acid, galactose,

and N-acetylgalactosamine residues.6 Polymeric IgA consists

of two or more IgA monomers linked by a joining protein, the

J chain. Secretory IgA (sIgA) on mucosal surfaces has an

additional protein, secretory component (Fig. 2).

Abnormalities of the IgA molecule in IgAN

The most noteworthy finding in IgA nephropathy is an

increased occurrence of IgA1 with poor galactosylation in the

circulation.7,8 The principal O-glycosylation abnormality in-

volves reduced galactosylation of the IgA1 hinge region O-

glycans, leading to an increased frequency of truncated O-

glycans.9 The changes in O-glycosylation only become

apparent after antigen encounter and are therefore likely to be

linked in some way to B-cell maturation and class switching

to IgA1 synthesis in IgAN.10 A similar abnormality in galac-

tosylation has been demonstrated for IgA1 produced in vitro

by tonsillar lymphocytes, suggesting that the tonsils may con-

tribute to the circulating pool of under-galactosylated IgA1 in

IgAN.11,12 Furthermore, there seems to be some relationship

between IgAN and IgA class switching in tonsil.

Mechanisms of IgA-immune complex formation

Aberrantly, galactosylated and sialylated IgA1 molecules

have an increased tendency to exhibit both IgA1 self-

aggregation13,14 and formation of antigen–antibody complexes

with IgG antibodies directed against IgA1 hinge epitopes,15

favoring the generation of IgA-IC. The inability of IgA to fix

complement effectively may also promote IgA-IC formation

and persistence in the circulation, as complement interrupts

immune complex lattice formation and is involved in complex

internalization by phagocytes. Complement could form the

membrane attack complex, which causes perforation and dis-

solution of the target cells.16,17 The presence of aberrantly

galactosylated IgA-IC has also been reported in the urine of

patients with IgAN, but not in patients with non-IgAN protein-

uric glomerular disease.18

Characteristics of the mesangial deposition of IgA

The mesangial deposition of IgA has been shown to bind

secretory component and therefore to consist at least partly of

J-chain-containing pIgA molecules such as SIgA.19 Studies

have demonstrated aberrant O-glycosylation of mesangial

IgA1 in eluted mesangial IgA and SIgA deposition on

mesangium.8,20 The reported under-galactosylation was also

seen in matched serum IgA1 samples, but mesangial IgA1

exhibited a more marked defect, suggesting that altered O-

glycosylation is a factor directly promoting mesangial deposi-

tion. It has been proposed that such changes in IgA1 O-
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Fig. 1. IgA immunostain in kidney, tonsil, and intestine in patients with IgA nephropathy. (1A)

Mesangial deposition of IgA by immunofluorescent staining in IgA nephropathy. (1B) IgA immunostain

in a tonsil of a case of IgA nephropathy showing IgA+ cells in the marginal zone and interfollicular area.

Note some positive cells in the follicular light zone. (1C) IgA immunostain in Peyer’s patch of an

intestine showing IgA+ cells in the dome beneath the follicle-associated epithelium and interfollicular

area. Some positive cells are also found in the follicular light zone.



galactosylation may affect the sialic acid content or

distribution and hence the electrostatic charge of IgA1.

PRODUCTION OF IgA IN IgA NEPHROPATHY

The production of poorly galactosylated IgA1 in IgAN

may result from a defect in B cells. Decreased activity of

core 1 b-1,3-galactosyltransferase (C1GalT1), which is the

key enzyme for galactosylation, has been shown in B cells.21

There is, however, no poor galactosylation in other O-

glycated immunoglobulins except IgA, suggesting the aber-

rant galactosylation may occur at the later stage of B-cell

development and may be secondary to aberrant

immunoregulation.10 For the Th2 cytokines, interleukin (IL)-

4 decreases messenger RNA and activity levels of C1GalT1.22

Besides deactivation of C1GalT1 in B cells, an increasing

number of pIgA1 plasma cells are found in the bone marrow

and tonsils in IgAN, and there is elevated IgA1 synthesis by

these plasma cells in spontaneous culture.18,23 More impor-

tantly, poor galactosylation is particularly apparent in IgA1

produced against mucosal antigens (Helicobacter pylori)

compared with systemic antigens (tetanus toxoid).24 This

observation suggests the fascinating possibility that, in IgA

nephropathy, there is no real defect in IgA1 O-glycosylation,

but rather an increase in “mucosal-type” IgA1 in serum, pos-

sibly related to the migration of mucosal B cells to bone

marrow, where they produce their “correct” poorly galactosy-

lated IgA.25 This is consistent with the observation that hom-

ing of lymphocytes between mucosal and systemic sites is

altered in IgA nephropathy,26,27 and this may ultimately ex-

plain how mucosally derived plasma cells might take up resi-

dence in systemic immune sites.28 The initial site of antigen

encounter heavily influences the ultimate phenotype of T and

B cells, and despite displacement, such plasma cells might be

expected to continue to produce mucosal-type antibodies in

systemic sites.29

MECHANISMS OF IgA CLASS SWITCHING

Class-switch recombination for IgA class switching

B cells could diversify their antibody repertoire through

three main genetic alterations that occur in two distinct phases

of B-cell development. For the antigen-independent phase in

the bone marrow, B-cell precursors could generate new B

cells to express IgM or further differentiate and express IgD

by assembling the exons that encode immunoglobulin heavy

(H) and light (L) chain variable regions from individual varia-

ble (V), diversity (D), and joining (J) gene segments through

V (D) J gene recombination.30 In the antigen-dependent

phase when B cells migrate to secondary lymphoid organs,31

mature B cells diversify their antibody repertoire to IgA or

IgG and IgE through somatic hypermutation and class

switching32,33 in the germinal centers of secondary lymphoid

follicles in the presence of antigen. As described above, B

cells may develop IgA class switching to acquire the expres-

sion of IgA in mucosa-associated lymphoid tissue (MALT)

via T-cell-dependent or T-cell-independent pathways and then

transmit to IgA plasma cells or home in on systemic sites.

Signals for IgA class switching

The switching process requires a variety of transcription

factors and enzymatic activity expressed by several cell-type-
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Fig. 2. Schematic illustration of the different forms of IgA antibodies. Monomeric IgA consists of two

heavy chains (CH1-CH3 domains and the heavy chain V-domain), two light chains (a light chain C- and

V-domain), and a flexible heavily O-glycated hinge region. Monomeric IgA1 is distinguished from IgA2

by the presence of an O-glycosylated mucin-like hinge region. In polymeric IgA, two IgA monomers are

coupled through one J chain. Secretory IgA has an additional molecule-secretory component, or the

ectodomains of the pIgR.



specific and general DNA repair enzymes, particularly

activation-induced cytidine deaminase (AID),34 an inducible

apolipoprotein-B mRNA-editing enzyme, and a catalytic

component 1 family member encoded by AICDA.35 IgA

switching may circumvent the need for T-cell help, which

provides CD40-CD40 ligand (CD40L)/CD154, T-cell recep-

tor (TCR)-major histocompatibility complex (MHC) interac-

tion and, instead, rely on proliferation- and survival-inducing

cytokines of the tumor necrosis (TNF) family, such as B-cell-

activating factor of the TNF family/B-lymphocyte stimulator

(BAFF/BLyS) secreted by monocytes, DCs, macrophages,

and FDCs,36 and a proliferation-inducing ligand (APRIL) se-

creted by activated (e.g., after lipopolysaccharide exposure)

DCs or macrophages. Transforming growth factor (TGF)-b

and IL-21 were also found to be involved in IgA switching.

T-cell-dependent IgA class switching

Antigens incite a humoral immune reaction through B-cell

proliferation, AID expression, and antibody repertoire diversi-

fication through somatic hypermutation and CSR in germinal

centers. In general, germinal-center reactions are highly de-

pendent on cognate interactions between antigen-specific B

cells and CD4+ T cells that express CD40L, a TNF family

member that engages CD40 on B cells,37 also as MCH en-

gages TCR. Antigens exposed on the surface of FDCs select

germinal-center B cells expressing a high-affinity B-cell re-

ceptor and promote B cells thereafter to differentiate into

long-lived memory B cells and antibody-secreting plasma

cells.38 T-cell-dependent antibody responses are strongly

biased towards IgA and involve activation of B cells by anti-

gen in the organized lymphoid tissue of gut Peyer’s patches

(PPs) and tonsils.4,39 Together with CD40L, TGF-b1 is essen-

tial for the induction of T-cell-dependent IgA class

switching.38

T-cell-independent IgA class switching

T-cell-independent IgA class switching may be found in

B-1 cells in mice and IgM+ memory B cells in humans. IgM+

memory B cells can be detected in the circulation and in the

marginal zone of the spleen, gut PPs, and tonsils. B cells

express mutated V(D)J genes, and undergo CD40-

independent IgA production in response to bacterial polysac-

charides, a canonical T-cell-independent antigen.40,41 T-cell-

independent antigens can also provide additional B-cell-

stimulating signals through DCs. During this process, DCs

release soluble class-switch-inducing factors related to

CD40L, including BAFF and APRIL.42-44

Regionalized class-switch mechanism

Human IgA responses are dominated by IgA1 in both

tonsils and the regional secretory effector sites. This suggests

that mucosal B-cell differentiation in those parts of the body

mainly takes place from sIgD–IgM+CD38+centrocytes by se-

quential downstream CH-gene switching.45 Tonsillar crypt

epithelium is activated to secrete the innate switch factor

BAFF and the thymic stromal lymphopoietin (TSLP) - a

cytokine that further promotes CSR and a broad reactivity of

local B cells by activating BAFF-producing DCs.46

Conversely, the relatively enhanced IgA2 expression in PPs

and the distal human gut altogether, including the mesenteric

lymph nodes, could reflect a direct switch from Cm to Ca2.

Such regional microbial influence on B-cell differentiation is

supported by the observation that Sm/Cm deletion is more

frequently detected in diseased than in clinically normal ton-

sils and adenoids,47 and extrafollicular IgD-producing plasma

cells are relatively numerous in recurrent tonsillitis and ad-

enoid hyperplasia.

THE ROLE OF DENDRITIC CELLS IN IgA CLASS

SWITCHING

DCs have an irreplaceable role in IgA class-switch mecha-

nisms. MALT DCs belong to a TNF-a/inducible nitric oxide

synthase (iNOS)-producing DC subset,48,49 which preferen-

tially expresses iNOS in response to the recognition of com-

mensal bacteria by toll-like receptor (TLR). Then, iNOS

could regulate the T-cell-dependent IgA CSR through expres-

sion of transforming growth factor-b receptor, and the T-cell-

independent IgA CSR through production of APRIL (also

called Tnfsf13) and BAFF (also called Tnfsf13b). One study

has shown that IgA CSR is impaired in iNOS-deficient

(iNOS2/2 ; gene also called Nos2) mice. Furthermore, adop-

tive transfer of iNOS1 DCs rescues IgA production in iNOS2/

2 mice.50 The presence of a naturally occurring TNF-

a/iNOS-producing DC subset may explain the predominance

of IgA production in the MALT, which is critical for gut

homeostasis.

HUMAN DENDRITIC CELL SUBSETS AND THE

ROLE OF FOLLICULAR DENDRITIC CELLS AND

PLASMACYTOID DENDRITIC CELLS IN IgA

CLASS SWITCHING

In terms of the DC subsets, there are Langerhans cells, the

first immunological barrier to the external environment at the

skin, plasmacytoid DCs (pDCs), an excellent producer of type

I interferons (IFNs ; IFNa/b) involved in antiviral responses,

myeloid DCs (mDCs) including conventional DC type 1,

which is active in CD4+ T-cell priming, and conventional DC

type 2, a producer of TGF-b for tolerance that is active in

cross-presentation to CD8+ T cells, and monocyte-derived

DCs (Mo-DCs), which are active in inflammation, tissue re-

pair, and homeostasis.

Meng H, et al.

164



FDCs reside in the lymphoid follicles of all lymphoid

tissues and are critically involved in germinal-center develop-

ment, immunoglobulin class switching, memory B-cell gener-

ation, selection of somatically mutated B cells with high-

affinity receptors, affinity maturation, induction of recall

responses, and regulation of serum IgG and IgE levels.51-53

FDCs are unique accessory cells that trap ICs and serve as a

source of antigen for germinal-center B cells.54 Thereby, ICs

on FDCs can promote AID production, class switching, and

maturation of naive IgM+ B cells.

Some reports have indicated the involvement of FDCs and

pDCs in IgA induction : The percentage of B cells bearing

CD23 (also known as an FDC marker in light zone) was

found to be significantly higher in patients, most likely repre-

senting in vivo B-cell activation due to chronic antigenic

stimulation.55 FDCs could send additional IgA-inducing sig-

nals to follicular B cells by releasing CD40L-related factors

known as BAFF and APRIL upon “priming” by mucosal

signals, such as commensal TLR ligands and retinoic acid.

Mucosal FDCs also release a large amount of active TGF-b1

and use their dendrites to organize commensal antigens in

“periodic” arrays. By releasing TGF-b1, BAFF, and APRIL,

and stimulating B-cell receptors and TLRs on B cells, FDCs

would enhance the IgA-inducing function of follicular helper

T cells in PPs.56 FDCs may also trigger IgA production in a

T-cell-independent manner by a similar mechanism.57,58

pDCs are “primed” by type I IFNs from intestinal stromal

cells to release a large amount of BAFF and APRIL, and then

promote follicular B cells from PPs and mesenteric lymph

nodes to undergo switching to IgA.59

RELATIONSHIP BETWEEN TONSILLAR FOCAL

INFECTION AND IgA NEPHROPATHY

Normal human tonsils contain 60% IgG-secreting plasma

cells and 40% IgA-secreting plasma cells, while in tonsils of

patients with IgAN, these proportions are reversed.60

Furthermore, compared with the tonsils of nondiseased con-

trols, those of patients with IgAN demonstrate some evident

abnormalities.61 The IgA deposits in glomerular mesangium

in patients with IgAN appear to be exclusively of the IgA1

subclass,62 and the IgA produced by tonsillar lymphocytes in

these patients is mainly pIgA1. The serum IgA levels in-

crease in about half of patients with IgAN63 and tonsillectomy

could decrease these serum levels of IgA antibody, suggesting

an intimate relationship between tonsillar focal infection and

IgAN.

Tonsillectomy can also improve the urinary findings,

maintain stable renal function, decrease mesangial prolifera-

tion and IgA deposition, and have a favorable effect on long-

term renal survival in some IgAN patients. Furthermore,

tonsillectomy maintains normal immune responses and does

not increase the incidence of upper respiratory tract infec-

tions, suggesting that tonsillectomy can be used as a poten-

tially effective treatment.64 Taken together, it should be em-

phasized that at least a part of IgAN and pIgA1 deposited in

glomerular mesangium may be of tonsillar origin.

Tonsillar bacterial infection and histologic findings in

IgAN

Some reports have suggested that Haemophilus para-

inuenza (H. parainfluenza) antigens stimulate tonsillar T and

B lymphocytes in patients with IgAN to produce cytokines

and IgA antibody, and an immune response to H. parainuen-

za antigens may play a role in the pathogenesis in some IgAN

cases.65,66 Microfold cells (membrane cell, M cells) in human

tonsils lie between the crypt epithelial cells to take up antigen

and then promote mitogen-triggered T cells, leading to the

production of Th1- and Th2-type cytokines for support of

cell-mediated and antibody responses, resulting in the genera-

tion and dissemination of antigen-specific memory B cells,

mainly dimeric IgA-producing effector B cells.67

Some studies have demonstrated that coccoid Helicobacter

pylori (H. pylori) was present in tonsillar crypts, and the

prevalence of H. pylori was greater in the IgAN group than in

the recurrent pharyngotonsillitis group. Bacterial colonies

were visible in tonsillar crypts for macroscopy. Tonsillar

crypts contained some bacterial colonies, horny layers of

stratified squamous epithelium, and chronic inflammatory

cells. H. pylori was present at the periphery of the bacterial

colony and the horny layers of the stratified squamous

epithelium.68 In the serum, a greater level of anti-H. pylori

IgA antibody was also found in IgAN patients than in controls

without renal disease.69

There are significant differences in histological structure,

proportion of constitutional cells, and expression profile of

cell adhesion molecules between tonsils with and without

IgAN. The most characteristic features of tonsils with IgAN

include enlarged primary T nodules composed predominantly

of small T lymphocytes, which are defined as small but appa-

rent nodules accumulating T lymphocytes (Fig. 3). These

nodules play a major role in the antigen triggering, helper T-

cell-dependent stimulation, and subsequent maturation of

antigen-responsive B cells into antibody-secreting plasma

cells.70 Some reports have suggested that tonsillectomy sup-

presses a decrease in regulatory (suppressor) T cells and cor-

rects abnormal cell-mediated immune responses in patients

with IgAN.71

One study has shown reduced reticulization of tonsillar

crypt epithelium in patients with IgAN compared with that in

controls who exhibited recurrent tonsillitis or tonsillar hyper-

trophy. Non-reticulated crypt epithelium was frequently ob-

served in IgAN tonsils, and even exceeded 50% of the total

crypt epithelia in the advanced stage of IgAN, compared with

7% in controls. Therefore, it has been speculated that the low
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level of reticulization in IgAN patients may induce the unusu-

al immunity responsible for the pathogenesis of IgAN.72

However, few articles have mentioned the tonsillar histologi-

cal features in IgAN, and further investigation is necessary.

Relationship between tonsillar IgA and glomerular

deposition of IgA

Bene et al. reported that an increment in the IgA popula-

tion was paralleled by augmentation of the number of dimeric

IgA-secreting cells (75% of IgA plasma cells) being stained

for both cytoplasmic IgA and J chain in IgA patients’

tonsils.73 Similar results suggested that the number of CD5+

B cells isolated from the tonsillar germinal centers of IgAN

patients was increased. These CD5+ B cells are likely IgA1

antibody-producing cells.74 IgA antibodies deposited in glo-

meruli specifically bind with tonsillar cells obtained from

patients with IgAN ;75 meanwhile, IgA produced by tonsillar

B cells binds to the glomerular mesangium of IgAN.76 Taken

together, these results demonstrate that abnormal immune

response of the tonsils is a central feature of the abnormal

pIgA biology in IgAN, which supports the hypothesis favor-

ing a tonsillar origin of the mesangial IgA deposits.

APPLICATION OF TONSILLECTOMY FOR IgA

NEPHROPATHY

Effect of tonsillectomy for adult or child IgA nephropathy

Because of IgA production in tonsillar tissue and the

frequent association of the onset of symptoms of IgAN with

mucosal infection, studies have been performed to explore the

effectiveness of tonsillectomy as an adjuvant therapy.77,78

Some studies demonstrated the effectiveness of tonsillectomy

in combination with steroid pulse therapy, with very favorable

results.78 Hotta et al. reported that combined treatment of

tonsillectomy and steroid therapy was associated with clinical

remission in 329 patients with IgA nephropathy.79 Similar

results were demonstrated by Komatsu et al., who reported

that combined therapy of tonsillectomy and pulse steroid was

superior to pulse steroid alone with regard to remission of

proteinuria.80 Tonsillectomy stopped gross hematuria in more

than two-thirds of patients.81 Furthermore, a new report from

a longitudinal study in Japan showed that tonsillectomy was

associated with a favorable renal outcome of IgA nephropathy

in terms of clinical remission and delayed renal deterioration

even in non-steroid-treated patients.82 The urinary protein

and microhematuria decreased significantly from 6 months

after tonsillectomy compared with those before operation.83

The clinical remission rate of urinary findings and the stable

renal function rate in tonsillectomized patients with IgAN

were significantly higher than those in nontonsillectomized

patients.84

One study reviewed 6 pediatric cases of IgAN with mild to

moderate disease and recurrent tonsillitis, showing that tonsil-

lectomy can be a useful adjuvant treatment to improve urinary

symptoms (including proteinuria, and gross and microscopic

hematuria) and renal function.85 Tonsillectomy decreased the

levels of serum IgA and salivary secretory IgA, especially in

children, several months or years after operation. However,

these changes neither cause significant immune deficiency

nor increase the incidence of immunomodulated diseases,

such as infections of the upper respiratory tract.86 On the

other hand, Rasche et al. described that tonsillectomy had no

beneficial effect on preventing end-stage renal disease

(ESRD).87

Indication and limitation of tonsillectomy for IgAN

nephropathy

In general, the efficacy of tonsillectomy in patients with

hematuria-type IgAN, especially those presenting hematuria

after tonsillar infection, is good.88 Tonsillectomy is mainly

indicated for patients with mild or moderate IgAN.89-91 Xie et

al. reported that tonsillectomy combined with steroid pulse

therapy may be effective in IgAN patients with a baseline

creatinine level of ≤ 2 mg/dL, whereas when serum creatinine

> 2 mg/dL, tonsillectomy may not change the renal outcome,

even if combined with steroid therapy. IgAN is a common

indication for tonsillectomy in Japan, but is less common
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Fig. 3. Histological structure of tonsils with and without IgAN. (3A) H&E stain of a tonsil without IgAN showing

hyperplastic germinal centers. (3B) H&E stain of a tonsil with IgAN showing some small germinal centers. (3C) DEC205+

dendritic cells in a tonsillar germinal center of IgA nephropathy. (3D) CD21+ follicular dendritic cell network in a tonsillar

germinal center of IgA nephropathy.



elsewhere.

CONCLUSION

IgAN remains the most common primary glomerulone-

phritis, but there is no effective advisable therapy because of

limited knowledge about the precise pathogenesis of this dis-

ease. Qualitative abnormality of IgA in circulation, formation

of IgA-IC and deposition in mesangium, complement activa-

tion, and damage to mesangial cells seem to be the major

steps in the pathogenesis of IgAN. An abnormal increase of

pIgA1 in circulation and mesangial deposition of IgA seem to

be initiating events in the pathogenesis of IgAN. Extensive

research is needed to clarify whether and how mucosally

primed plasma cells and IgA class switching enhanced by

FDCs in MALT have a relationship with the pathogenesis of

IgAN. In particular, some results provide a link between

tonsillar focal infection and IgAN, so tonsillectomy should be

considered as a therapeutic strategy in patients with IgAN,

especially at a mild or early stage.
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